
Maastricht University

Department of Data Science and Knowledge Engineering

Master’s Program in Artificial Intelligence

Computer Vision

June 5, 2021

Assignment2 -
Deep Learning for Emotion Classification

Caio Guirado

Dhruv Rathi

https://github.com/caioguirado/CV-Assignment-2

Contents

1 Introduction 2

2 Implementation 2

3 Experiments 2
3.1 Number of Layers Effect . 2
3.2 Convolution Kernel Size Effect . 3
3.3 Pre-trained Architectures . 3
3.4 Learnt Features Visualization . 4

4 Feature selection - Experiments 4
4.1 Motivation . 4
4.2 Xception Architecture . 5
4.3 Training Facial Landmarking model . 5
4.4 Dataset Generation . 5

4.4.1 Face Dataset . 5
4.4.2 Mouth Dataset . 6

4.5 Experiments . 6
4.5.1 Face Dataset Results . 6
4.5.2 Mouth Dataset Results . 6

5 Conclusion 7

A Learned Filters 8

1

Abstract

In this paper, Deep Learning for image classifica-
tion is applied through Convolutional Neural Net-
works(CNN) to classify emotions from faces pictures.
Experiments were conducted to investigate the dif-
ferences in output by varying parameters related to
the model’s architecture and the use of fine-tuned
pre-trained models. Further, we also contribute two
new datasets, i.e. cropped facial region and cropped
mouth region obtained using trained CNN models,
and we discuss the results of these datasets for the
task of emotion classification. Finally, the learnt con-
volution filters were plotted to reason about the the
intuition of the features found.

1 Introduction

Image classification is a popular task in computer vi-
sion. Several approaches have been developed over
the years in order to accurately tell what is the correct
label for a given image, but recently Deep Learning
approaches have shown an enormous potential when
trained with big amounts of data. One of the first
successful applications of convolutional neural net-
works applied to a real dataset that achieved state
of the art performance when it was released can be
found in [2]. After that, different architectures were
developed testing extension on CNNs parameters.
Our goal is to implement a basic CNN model, train it
based on the FER dataset 1, evaluate its performance
and compare with other initial setups based on differ-
ent parameters. The main parameters of interest are
the number of layers, the kernel size of the convolu-
tions, and pre-trained architectures. For the task of
emotion recognition, it is evident that there are set of
dominating features that stands out more than oth-
ers, these features are mostly facial cues expressed by
eyes and mouth, therefore, we implemented a facial
landmark detection model, and produce two novel
datasets, one of cropped faces and the other dataset
is cropped portion of images which contains the lower
part of the face, i.e., lips and mouth. We compare

1https://www.kaggle.com/ashishpatel26/facial-expression-
recognitionferchallenge

the results of these datasets on the task of emotion
recognition against the provided benchmark dataset.

2 Implementation

In order to perform many different experiments, and
don’t lose track of documentation, a framework was
built in Python with separation of concerns, so that
basically a configuration file can be enough to auto-
matically generate an experiment. The framework
supports several data pre-processing and augmen-
tation pipelines, models, and datasets, as well as
custom parameters like loss function, learning rate,
batch size. Figure 1 shows the framework overall
structure. The results were measured over the public
set of the original dataset.

Figure 1: Framework structure

3 Experiments

3.1 Number of Layers Effect

In order to understand how the addition of layers im-
pacts the model performance, three CNNs were built,
all of them with the same convolution parameters,
but with incremental sizes of number of fully con-
nected layers. Table 2 shows the information about
the three models’ architectures. Table 1 shows the
results after training the models for 40 epochs. Fig-
ure 2 shows the training process of those models.

2

Exp Accuracy F1 Balanced Acc
CNN 1 0.80 0.80 0.78
CNN 2 0.83 0.83 0.81
CNN 3 0.77 0.77 0.76

Table 1: Models performance on public validation set

Figure 2: Top left: CNN 1; Top right: CNN 2; Bot-
tom: CNN 3

In all of the architectures tested, the data shows
that the performance on the validation set flats
around the 20th epoch, being prone to overfit in the
following iterations. The accuracy, f1-score and bal-
anced accuracy performances doesn’t show significant
difference, Showing that the addition of many more
fully connected layers in the end of the net, in this
case didn’t make much difference. Of course, many
other things can be changed to try to make this layers
addition to improve the model’s performance, such as
data augmentation, change the convolution parame-
ters, add dropout, etc.

3.2 Convolution Kernel Size Effect

A new experiment was conducted to understand the
effect of the convolution kernel size in the model’s
performance. In this, a comparison between CNN
1, presented in the previous section, and a cloned
architecture, changed only to convolutions kernel size
equals 3 was executed. We call this new version CNN
4. Figure 3 shows the training history of the new

architecture presented. Table 3 presents the accuracy
and the f1-score for both networks.

Figure 3: New CNN with kernel size = 3

From the training history, it’s interesting to notice
that the validation performance for CNN 4 doesn’t
flat over the 20th iteration, showing a continuous
trend of decrease over epochs. The final metrics how-
ever, show a similar behaviour of both. On the intu-
ition side, since the images are small in size, and the
specific task of recognizing emotions can deal with
very delicate and small regions of a face, it seems
that smaller convolution kernel sizes might be able
to process that local behaviour better.

3.3 Pre-trained Architectures

In this work a pre-trained architecture was also tested
to compare with the initial configurations that were
created without many parametric experimentation.
GoogLeNet [4] pre-trained on ImageNet dataset was
chosen to be compared with the other models al-
ready presented in the previous sections. In order to
match the output size for our domain, the last fully
connected layer was replaced by one with 7 output
nodes. Table 4 presents the results of training the
pre-trained GoogLeNet architecture.

The obtained results show that we obtained a bet-
ter performance with the fine tuning of the pre-
trained model. This follows the intuition that by hav-
ing a much deeper structure not only on the fully con-
nected part, but also on the convolution part, and by
having already acquired knowledge, this architecture
is able to outperform the previous presented ones.

3

Model FC Layers
All (Convolution) Conv(outchannels = 10, kernelsize = 5)

MaxPool(kernelsize = 4)
Conv(outchannels = 10, kernelsize = 5)
MaxPool(kernelsize = 4)

CNN 1 Linear(kernelsize = 342 ∗ 20, outputsize = 120)
Linear(kernelsize = 120, outputsize = 250)
Linear(kernelsize = 250, outputsize = 7)

CNN 2 Linear(kernelsize = 342 ∗ 20, outputsize = 250)
Linear(kernelsize = 250, outputsize = 120)
Linear(kernelsize = 120, outputsize = 120)
Linear(kernelsize = 120, outputsize = 120)
Linear(kernelsize = 120, outputsize = 7)

CNN 3 Linear(kernelsize = 342 ∗ 20, outputsize = 250)
Linear(kernelsize = 250, outputsize = 120)
Linear(kernelsize = 120, outputsize = 120)
Linear(kernelsize = 120, outputsize = 120)
Linear(kernelsize = 120, outputsize = 120)
Linear(kernelsize = 120, outputsize = 50)
Linear(kernelsize = 50, outputsize = 50)
Linear(kernelsize = 50, outputsize = 7)

Table 2: Three custom CNNs created for experiments. First row shows the common convolution part of the
network, and each following row describes the fully connected configuration of each.

Exp Accuracy F1
CNN 1 0.80 0.80
CNN 4 0.80 0.80

Table 3: Models performance on public validation set

3.4 Learnt Features Visualization

One thing that it’s possible to do after the model
is trained is to visualize the activations of an input
signal and observe their output. This can help to un-
derstand better what was determinant to the model
for concluding that certain image belonged to a spe-
cific class. The results are shared in Annex A. From
them, it’s possible to notice that the model learned
to focus on important regions to recognize features,
such as eyes and mouth.

4 Feature selection - Experi-
ments

4.1 Motivation

For the task of emotion recognition, it is evident that
a set of features dominate over others, these features
are mostly facial cues that express emotions such as
eyes - frowning, crowed, crying; mouth - smiling, etc.
This motivates us to select these features explicitly
and therefore help the model in learning them better,
rather than over-fitting on noisy features that are re-
curring but irrelevant. We do this with the help of a
facial landmark detection model that servers us with
68 facial points and we produce two sets of datasets
from it, as discussed below. The landmarking model
is CNN based architecture, derived from [1].

4

class precision recall f1-score

0 0.87 0.83 0.85
1 0.90 0.77 0.83
2 0.84 0.82 0.83
3 0.91 0.96 0.93
4 0.81 0.84 0.83
5 0.92 0.91 0.91
6 0.88 0.85 0.86
accuracy 0.87 0.87 0.87
macro avg 0.88 0.85 0.86

weighted avg 0.87 0.87 0.87

Table 4: Pre-trained GoogLeNet Performance Re-
sults

4.2 Xception Architecture

The Xception architecture consists of 36 convolu-
tional layers structured into 14 linear residual con-
nected modules, with the exception of the input and
the output module. The model modules can broadly
be divided into three levels, Entry flow, Middle flow,
Exit flow, these modules are interdependent and the
accompanying code richly follows this structure of
implementation. The architecture was implemented
with PyTorch library.

4.3 Training Facial Landmarking
model

The Xception net was trained on [3], the ibug 300W
Large Face Landmark Dataset which contains 7000
images with labels of 68 facial landmarking coordi-
nates per face. The dataset is preprocessed with ran-
dom application of partial cropping of the face and
corresponding labels, along with rotation, changes in
image saturation and hues. The training was per-
formed on Tesla P100 GPU and took 6 hours.

4.4 Dataset Generation

As the model is trained now, we further generate two
datasets as discussed earlier.

Figure 4: 68 Facial landmarks and Model sample out-
put

4.4.1 Face Dataset

The first data generation is based on the premise that
other than the face, all features present in an im-
age, e.g. the background, hair style, hair color, etc
do not play a generalised role in emotion detection
which the model might learn and overfit. Therefore,
we built a pipeline to run each image present in the
Kaggle dataset and generate it’s corresponding 68 fa-
cial landmarkings, the image is then cut from point 1
with width = [1-17] and point 20 to height = [9-20].
A sample of the output dataset is shown in figure 5.

Figure 5: Face Dataset sample 1

5

Figure 6: Face Dataset sample 2

4.4.2 Mouth Dataset

The premise for generating this dataset is that ma-
jority of the emotions involve the movement of mouth
muscles.

Figure 7: Mouth Dataset sample 1

Figure 8: Mouth Dataset sample 2

4.5 Experiments

The new datasets are used for training the Google
Net based CNN model described in 3.3.

4.5.1 Face Dataset Results

Figure 9: Training using Face dataset

precision recall f1-score

0 0.86 0.86 0.86
1 0.93 0.84 0.88
2 0.90 0.84 0.87
3 0.93 0.95 0.94
4 0.84 0.89 0.86
5 0.93 0.92 0.92
6 0.88 0.87 0.88
accuracy 0.89 0.89 0.89
macro avg 0.90 0.88 0.89

weighted avg 0.898 0.897 0.897

Table 5: GoogLeNet Model results with Face Dataset

From 9 5 we can clearly see that Googlenet on
FaceDataset outperforms the vanilla dataset, al-
though similar trend can as can be observed as in
3 that the validation loss becomes stagnant after 20
epochs.

4.5.2 Mouth Dataset Results

From 10 6, the results of GoogleNet trained on Mouth
dataset are at par with the 4.5.1 and outperforms
the vanilla dataset.
This experiment shows that our feature selection
leads to dominant training and noise reduction.

6

Figure 10: Training using Mouth dataset

precision recall f1-score

0 0.89 0.86 0.88
1 0.86 0.88 0.87
2 0.89 0.82 0.86
3 0.93 0.96 0.94
4 0.87 0.86 0.87
5 0.90 0.94 0.92
6 0.86 0.90 0.88
accuracy 0.89 0.89 0.89
macro avg 0.89 0.89 0.89

weighted avg 0.899 0.899 0.899

Table 6: GoogLeNet Model results with Mouth
Dataset

5 Conclusion

In this work, we learned how to work with deep
convolutional neural networks applied to an emotion
classification problem. The experiment conducted
helped to understand the importance of choosing
good parameters to the final results. For instance,
one might prefer to look at a higher batch size, higher
learning rate, less augmentations and a less deeper
network architecture and fine tune pre-trained mod-
els if the intention is to increase the training speed, of
course being cautious to not jeopardize the model’s
performance. Other parameters like filters size, pool-
ing size, dropout can help the network to focus on

regions in a certain way, helping with the domain of
the problem application and generalization. We also
learnt that feature selection plays an important part
in deep learning problems, and reducing the suitable
noise from the datasets is an important step.

References

[1] François Chollet. Xception: Deep learning with
depthwise separable convolutions, 2017.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.
Hinton. Imagenet classification with deep con-
volutional neural networks. Commun. ACM,
60(6):84–90, May 2017.

[3] Christos Sagonas, Georgios Tzimiropoulos, Ste-
fanos Zafeiriou, and Maja Pantic. 300 faces
in-the-wild challenge: The first facial landmark
localization challenge. In 2013 IEEE Interna-
tional Conference on Computer Vision Work-
shops, pages 397–403, 2013.

[4] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and An-
drew Rabinovich. Going deeper with convolu-
tions. CoRR, abs/1409.4842, 2014.

7

A Learned Filters

Figure 11: Activations from first convolution layer of CNN 1

Figure 12: Activations from second convolution layer of CNN 1

8

Figure 13: Activations from first convolution layer of CNN 1

Figure 14: Activations from second convolution layer of CNN 1

9

Figure 15: Activations from first convolution layer of CNN 1

Figure 16: Activations from second convolution layer of CNN 1

10

	Introduction
	Implementation
	Experiments
	Number of Layers Effect
	Convolution Kernel Size Effect
	Pre-trained Architectures
	Learnt Features Visualization

	Feature selection - Experiments
	Motivation
	Xception Architecture
	Training Facial Landmarking model
	Dataset Generation
	Face Dataset
	Mouth Dataset

	Experiments
	Face Dataset Results
	Mouth Dataset Results

	Conclusion
	Learned Filters

